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The problem of extremal stresses in the first fundamental problem for a half-plane and
a circle depending on the stress distribution on the contour is studied by using estimates
for the integral operators of plane elasticity theory, S, A, Kas'ianiuk solved the problems
for the half-plane and G.1, Tkachuk for the circle,

It is known from [1], p.293 and from [2] that the stress components X, X,, Y, at the
point z =z 4 iy in the first fundamental plane problem for the half-plane y <0 are
defined in terms of the normal N(t) and tangential T (¢) stresses given along the z-axis

ing th 1iti
by using the equalities X, LY, =4Re® (2) (0.4)

Y, — X 20X, =2[z0(z) + ¥ (3)]
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(cont,)
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In the problem for the circle [z| <X R, as is known from [2], the tangential and normal
stresses Rg and R, at the point z = re®, r 5= 0, are defined (in a polar coordinate system)
by the equalities

¥ (z dt

,  R—r 90 rRT
2R = ———— =+ —/— Q gu{) T (t)dt (0.2)
1}

2
()T (tydt 4 :: ng(t)N(t)dt
0

E}

2n
R —r? HQ R — 2
2R r2=r
r 2 ar + ] S
0

2
1 T
Q=7 \ [ ONO—gOT Ol
0
Here and henceforth, we have introduced the notation

Rt —r? 2rR sin (6 —
sal)=—"m - gz(t)=r—t%—i, g()=R*—2rRcos(®—t)+r* (0.3)

and N (t) and T (t) are the corresponding, given normal and tangential stresses on the
circle z = Re', Therefore, the stress components at an arbitrary point z of the domain
under consideration are functionals defined on sets of funcnons N () and T (t) . If it
be required that the functions N (¢) and T (f) satisfy some constraints, for example ;
either

IN@ << T@H=0 {0.4)
T @<t =0

or

or
(e +mena<e
r
etc,, then the problem of seeking the extremal values of the quantities

X, Y, Ry R, VX1V VRI{R
etc,, and the functions N (¢) and T (¢) realizing them, can be posed,
To solve the formulated problems herein, various modifications are utilized of the
Cauchy-Buniakowski inequality in Banach space [3]
| X (2)] <|X**[-] =) (0.5)
where X (2) is a linear functional, ||z| is the norm of the element and | X**| is the
norm of the functional,

1, Let us first examine the case when T (t) = 0 along the half-plane boundary, and
N (¢) satisfies the conditions

N@=0 (tI>a, [N@IS! 1| a) (1.1)

caused by physical considerations [1], Then
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?0‘3
g N (1.2)

2 2
Xy='? S he(t) N(i)dl, Y =-T

“,ma

Here as well as henceforth, the following notation is introduced

h@O=yt=—2z), h®)=yC—2? h)=(@—1)+y (1.3)
Utilizing an estimate of the form (0. 5) for the integrals (1.2) with the constraints (1.1),
we rapidly obtain that the maximum of Xyin N (¢) is realized only by a function ¥, {f}
of the form:

1) if |[z|<a
No@®=0(t!>a) No(t) = =l (—a<t<2), N () =1z <t.a)
i
X,y =7 R—o@y)—o(—zy)]
{ Iy
Yy=—7le@ -~y +—/ 08 y)—0(~z )]

2
B(xyy)=_(7a£%) (.I)(Iy?/):“"ﬁ-z%, E(I,y)zarctg (a+x)

2) if e<—a(or z>a)
No(®)=0 (i‘I>&): N()=%1! (ti<a)
X, =+ [m(xvy)-‘ﬂ(—x,y)]
Y, =+ ",? [0(z,9) + 6 (—2, )] i—n— [e y) +e(—z y)]

(the lower signs correspond to the case z > a) From the same considerations it is clear
that the maximum of Yyin N () is realized only by a function N, (1) of the form

No=1 (1t]<a), No =0 (1]>a)
1 {
Y, == [0(z, 4) + 8 (2, §)] — o [e.(2 9) + & (=2, )]
I
X, =—Floy)—e(—zy)]

Now let us examine the case when N (t) = 0 along the half-plane boundary and 7 ()
satisfies the conditions

T@H=0 (t|>a), ITWi<t(t|<a) (1.4)
Then a a
] 2 ¢ 2 A ()
Yy=—7% 5 o T0d Y= | m TO “5

Utilizing an estimate of the form (0, 5) for the integrals (1, 5) with the constraints(1.4),
we obtain that the maximum of Xyin T (¢) is realized only by a function 7, () of the

form To®)=1(t|<a) To(®) =0 (1¢]>a)
H l
X, == [0 9) + 0 (=2, 9)] — = [e(z.9) + 8 (—2, 9)]

i
Y,=—Flo@y—o(—zy)]
the maximum of Y in 7 (¢) is realized only by a function 7o () of the form:
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1) if |zl<a

To()=0 (2]>4a), Tot)=—1{—a<t<3), To()=1 (=<tio

i
Yy =7 [2— o(z,y) —0(—2,9)]

X, = l—zf 0@y —0(—=yl+ —,l-; [e(z. y) —e(—=, ¥)]
2) if z< —a{or z>uq)
To)=0 (t]>a), Tol)=ti (t]<a)
Y, =F — [0(z,3) 0 (—z, y)]
X, =t 2 [8(2,9) + 0 (—2 1)) F = o2, ) + £ (—2, 9]

(the lower signs correspond to the case z > a).
Finally, let us examine the case when the stresses along the half-plane contour satisfy
the condition o

S (N2 + T2(D)] de << 12 ' (1.6)
-—00
Taking account of the notation (1. 3), we have from the equalities (0, 1)
1,-= \ movo-ROTOTE &)
2 T dt
Y,=x ) =¥V O+mOT Ol Ty
-0

and in this case the inequality (0, 5) becomes

BAy — X  PAp— XY
o yVi>o0 (1.8)
PAn—X )Y, PBdn-Y,
4 ¢ yhe () 1
yhe (L
All = —ﬂ% S X (!) dt =— Zﬂy
—00
& ¢ 3
y
A =3 ‘ R %= Tony
—
4 ¢ yh
t
A= An=— 2l Q !;lal(t()) dt=0
—00

As is known from [3], the equality sign is realized in (1, 8) only by those Xyand Yy which
correspond to the functions

2 hy () — Eo 2 ha (¢ hy (¢
No() = — [&1 x(h)'(t)i ] , o) =— [ E1 z()h;l'(:;.z 1() ] (1.9)
with appropriate §; and &.
Consequently
2ny sty
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_t Lys -(cont, )
maxy, Xy = Ygag s DAINOTO Y T =
. Ly3
maxN(t)'T(') { XU + le ‘ =3 :——-2—:-‘-9 .

The functions No(t) and To(t) realizing maxy, 5« X, have the form
[ m@ 2 I k(.

2
No(l) o — e e P {1.10)
ol)==3 Y =2ny k)’ To®) n V=2ny k2
while those realizing maxy ., 7Y, and maxXyq r¢q | X, + Y | have the form
2 lys ¥ 2 1ys m@
No(t) =—— To() = 14 (1.11)

n V=2ny n2()’ n V=Zny oY o
The values of &, and §, for the extremal functions (1,10) and (1.11) are found from the
equations

L2 "S" M@ON O =k OTo)
Voo & D 1)
0= 2 § — B3N () - he () Ts (1)
IE R {t)

0___3_°§" M) Nel) =) Tol)
="n ) R (1)

lvs 2 S —y3Ng (1) + ha (1) To(i)
Vo —ong h2 (1)

Here N, (t) and Ty (f) are determined by the equalities (1. 9),

2, The first fundamental plane problem for a circle is investigated in perfect analog,
Let us first examine the problem of maximal Rgand R, at the point z = rel’, r <0, of
the circle || < R, when only a normal stress

N, INISE 2.0)

is applied to points of the boundary circle z == Re¥, 0<t<<2n, Inthiscase T (1) =0,

hence we obtain from (0, 2) 2%

R? - r2 & (t)
Ry =7z z ()

N9t (2.2)

R

R*— 12 ¢ Rcos(t—6)—
¢ )m_’)g 03t =9=r ya

r 0]
The maximum of Rgin N (1) is realized, on the basis of (0. 5), only by a function Ny ()
of the form
No()=1 0<t<O0+ @), Np()=—-10<t<h na+0<e<<2n)
moreover
2RI

0= "mr *

The maximum of Rrin N (f) is realized only by a function N, (¢) of the form

er()
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No@)=—1 (@<i<2n—9), M@=l O0<:<82n—-3%t<20)

T
9= 0+arccos———R
moreover

R—-—__VR“ ‘+_—-arctg R+r ) R,=0

Now let us examine the case when
z=R 0<i22r, N@H=0

along the boundary of the circle and the tangential stresses satisfy the constraint

ITO)<! (2.8)
In this case
on
Ry= RS § R —r CE D028 1 (240

0

T () dt

R R:— 2 2§ g2 () [R? + 3r® —4Rrcos (t —0)]

r =7 &nrd g
[}
Since R (3r* 4 R%) >r (3R* + %) for r < R, then the maximum of Ryin T (¢) realized
only by the function T, (¢) = ! and moreover
IR
Ry = . R,=0 (r=0)

r2

Two cases should be separated in seeking the maximum of R,.in T () :
1) If 0 < r < 1/3R, then the maximum of R, in T (¢) is realized only by a function
Ty (t) of the form
To()=1 O<t<<O+n), To()=—! OKt< 0,0+t

moreover 9l Ryt L R+r 2lR

Rr=—:rt— rt LR—r — “wr Rq =0
2) If Y3R < r < R, then the maximum of R,in 7T (2) is realized only by a func-

tion To (t) Of the form TO (t):l (e tl.ﬂ—l‘-e [<f3)

To(ty=—1 (O<t<On<tnt0,t<1<<2m)

R? 4 3r2

-h=6+arccos-—4%}{-—r—. lg=2n 4 20 —11

moreover
R 3 I(R?— r2
Rr=—l——~——+21 2 HEZT. R0

Finally, when the stresses along the boundary of the circle |z| << R satisfy the condi-
tion or

S V() + T2 (O] de < (2.5)

)
we have

2r .
Ry = E}F S {g1(t) [2R* (3r* -+ R?) — 2Rr (* + 3RY) cos @ — )] T () —
0

— 8 () (B — PN () 7y
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R:—

r2
r=L=r Q fg2() [3r*+ B2 — &Rrcos (8 — )] T (1) +

+a(t)2r[Reos(®— ) —r] N ()} —7-
In this case the inequality (0, 5) becomes
BBu— Ry —RyR,
—RyR, 2By — R 2

g (l)

>0 (2.6)

21

By= ,H:,z S g2 (1) [2R? (3r + R?) — 2Rr (3 + 3R?) cos (0 — )]’ g, (!) +

(R — 1)t <' g () N

+ " ine g ()

an
RE . p232
B = S {2 (0 [3r* + R*— 4Rreos @ — P +

dt
+4r2g 2 () [Reos (8 — 1) — r]3} 0
Hence, the ellipse of values of Ry and R, is defined by the inequality
R2 " R
2By 2By
The boundary points of this ellipse correspond only to functions of the form

<1

1 gi{t) fceosa

TO="5 70 Via

[2R?(3r? 4 RY —

1 g () (R¥—r¥lsina

4nrr g (l) V B

+ R* —4Rrcos (8 — )]

1 g2(l) lcosa
4t ¢() VBu
‘ 1 gi(t) lsina
T 4are g () V Ba-

— 2Rr(r* + 3RY cos (B— 1)] + [3r2 -+

No{t)y =— (R*—r¥2 4+

2r(RT—rf[Reos( —1) —rl,

These functions realize the maximum. of R, for o = 0 and the maximum of R, for
o4 = 112 iz ™
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